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Quantum (2 + 1) kinematical algebras: a global approach 

A Ballesteros, F J Herranz, M A del Olmo and M Santander 
Departamento de FMca Te4rica Universidad de Valladolid, E4701 1 Valladolid, Spain7 

Received 10 July 1993, in final form 23 SeptemMr 1993 

Abstract. In t h i s  paper we give an approach to quantum deformations of the (2t1) kinematical 
Lie algebras within a scheme that simulmwusly describes a l l  groups of motions of classid 
geometries in N = 3 dimensions. We cover at once all the kinematical geomebies including 
the quantum versions of Inonii-Wiper contractions, which are defined in a ~ t u r a l  way and 
relate q-deformations as expected. We thus obtain some q-deformations previously known for 
the three-dimensional Euclidean and (2+l)-Poinc& algebras and also some new qdeformations 
for these and other b e m a t i d  akebras. such as the (ZtIMe Sitter. Galilei and Newton-Hooke - 
algebras. 

1. Introduction 

The deformation of the universal enveloping algebras of classical simple Lie algebras can 
be now considered as a solved problem in quantum group theory [l-31. However, many 
physically interesting algebras (for instance, Galilei and Poincd  algebras) do not belong to 
this class. They are neither orthogonal nor pseudo-orthogonal real forms of classical simple 
Lie algebras, but are related to them by means of Inonii-Wigner (Iw) contractions [4]. 
Among the methods for obtaining quantum analogues of kinematical algebras [5-71, a 
successful one is based on a generalization of such a contraction procedure [8]. 

The task of giving a comprehensive framework summarizing all possible classes of 
'quantum contractions' is not a straightforward consequence of the IW concept of contraction. 
Any transformation acting on a quantum group has to be defined on two different (but deeply 
related) levels: the algebra and co-algebra structures (plus the antipode) [9, lo]. Classical 
contractions deal with the former level, but their quantum generalizations, which concern 
both levels together, are no longer unique and the number of different possibilities increases 
strongly with the algebra dimension. 

The present paper uses a Cayley-Klein (CK) type geometrical setting [11-15] as a 
supplementary structure in order to make some progress with this problem. Although the 
geometrical interpretation is lost when quantizing, the underlying classical structure remains 
relevant in terms of properties of the Hopf algebra. 

In section 2 we give a brief overview about those classical features of the CK Lie algebras 
appearing in classical three-dimensional CK geometries (3DCKG) that keep their interest in 
the quantum case. Section 3 presents a prescription for a simultaneous q-deformation of 
all these CK algebras. A matrix realization is also given. In section 4 some quantum @+I) 
kinematical algebras appearing in our scheme are studied: three (2+1) q-Poincar6 and q- 
de Sitter algebras, a (2+1) q-Galilei algebra and a (2+1) q-Newton-Hooke algebra. Most 
of these q-algebras are new, but some are already known (the (2+1) qPoincar6 given by 
Lukierski et a1 in [16] and the 3D q-Euclidean obtained by Celeghini ef al [17]). Finally, 
in the last section we make some remarks and comments. 

t E-mail address: fteorica@cpd.uva.es 
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2. The three-dimensional Cayley-Klein geometries 

The goal in this section is not so much to give a complete geometrical description of the 3D- 
CKG as to introduce a global picture and to collect those properties of their motion groups 
that will be used later. A complete description of these 'classical' systems for arbitrary 
dimension will be given in a forthcoming paper [13]. From a group theoretical viewpoint, 
a 3D-CKG is determined by a six-dimensional Lie group G and a set of three commuting 
involutions SCO), S(1) and S(Z) of the Lie algebra g of G such that: 

(1) The invariant elements of 5 under each involution axe subalgebras 6"). h(') and 6") of 
g of dimensions 3, 2 and 3, respectively. 

(2) The group G acts transitively on the symmetric homogeneous spaces X(') = G/H(')  
(i = 0,1,2), where H(') is the Lie subgroup of G with Lie subalgebra ijCi). The 
homogeneous spaces X(') (i = 0, 1,2) are identified with the spaces of (first kind) 
points, lines and planes, respectively. 

(3) The ZD-subgeometries associated to the sets of lines through a point of X(') and to the 
set of planes through a point of are ZD-CKG. 

These conditions completely characterize all the 3D-CKG via their motion groups. Let 
Jij ,  (i -= j ;  i, j = 0,1,2,3) be a basis of the Lie algebra 5, such that the action of the 
involutions S(,) (i = 0, 1,2) is defined as 

S(O) : (JoI, Ja. 503, JIZ. J13, Ju) + (-JoI. -Ja, -J03. Jiz, 513. Ju) 
&I) : (JoI, JOZ, J03, J I Z ~  513. Ju) + (JoI, -Joz, -Jm, -JIz, -313, Ju) 
SO) : ( J o I ,  JOZ- 103, JIZ- 513. 57.3) + (JoI, J O Z ~  -J03. JIZ, -513. -Jul. 

(2.1) 

These involutions generate a Zz @ 7Zz @ 7Zz Abelian group and originate a grading of 
the Lie algebra g [18-211. Hypothesis (1) is then automatically fulfilled; by now imposing 
hypotheses (2) and (3), the Lie algebra 5 turns out to be determined by three real parameters 
~i (i = 1,2,3); it will be denoted g(e,,K2,q? and its Lie brackets can be written in terms of 
the parameters ~ i j  := K i + I K i + Z . .  . ~j (i < J ;  i, j = 0,1,2,3) as follows 

[ J i j ,  Jim1 = 8i,J1j - SjiJi, + 8j,~i, Jii + G i i ~ i j J j ,  i 4 l j 4 m . (2.2) 

There are two linearly independent second-order Casimirs for 5(<, ,a,9): 

CI = KzK3Jtl 4- K3& f Jt3 + KiK3JfZ + K I J : ~  + K i K &  
(2.3) 

The parameters ~i (i = 1,2,3) are l iked  to the 'kind' of measure of separation 
between points, lines and planes (elliptical, parabolical or hyperbolical in Klein terminology 
according to ~i is > 0, = 0 or .c 0, respectively). Each ~i can be separately scaled to +1, 
0, or -1, so there are 33 = 27 essentially different CKG associated to the possible triads 
( ~ 1 ,  K Z .  ~ 3 )  with ~i E [+, 0, -}. The same abstract Lie algebra may appear more than once 
in the list g(K,.c2.K,). When all ~i are different from zero (eight cases), the algebras (2.2) are 
so(4) (only once for (+,+,+)), so(3, 1) (four times) and so(2,2) (three times). When one 
or more ~i are equal to zero, we obtain the so-called quasisimple algebras; among them 
we get the inhomogeneous orthogonal algebras iso(3) Euclidean algebra (twice), iso(2,l) 
Poincark algebra (six times) and iiso(2) Galilean algebra (twice). This multiple appearance 

~ = J 0 3 J l Z f K Z J 0 1 ~ 2 3  -JOZJ13. 
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Figure 1. Groups of motion of the 3DEKO. Each point corresponds to a set of values 
(Y,. Q, Q) of the fundamental constants. The group G with Lie algebra &K1,K2,q, is also 
shown. Contractions mund points, (resp. lines and planes) move from the sides to the centre 
slice of the cube, following the direction YI (resp. K2. K 3 ) .  

has a clear geometrical interpretation [13]. Figure 1 displays these 3DCKG and gives for 
each vdne of (K,, KZ, ~ 3 )  their Lie groups as abstract groups. 

Each (basic) involution S(j) gives rise to an IW contraction by leaving fixed the elements 
invariant under such involution, multiplying the anti-invariant elements by a parameter E,  

and taking the limit E 0. We have three basic contractions: 

S(O) +tLocalcontr (J0i~Joz,903~9iz~9l3,923) -(EJoI.EJoz.EJo~.J~z~J~~, Jzd 

S(1) cf Axial cone (Jm, JOZ, J03,Jiz, 9139 JZ3) = (JoI, EJoz,  ~Jo3. EJIz. &Jig7 523) 

S(Z) Planar con@ ( ~ o I . ~ o z . ~ ~ ~ . J I z ~ J ~ ~ ~ ~ ~ )  = (JoI, Joz,&JO3, J l z , ~ J 1 3 , & )  

(2.4) 



1286 A Ballesteros et a! 

where Ji j  denotes the new generators which close the contracted algebra. The contraction 
linked with the involution Sei) (i = 0,1,2) makes zero the parameter K ~ + I  while keeping 
invariant the others and originates a new (contracted) geometry that describes the behaviour 
of the old one in a neighbourhood of a point, a line or a plane, respectively. 

The 3D-CK algebras can be realized in terms of 4 x 4 real matrices, 

(2.5) I T ) ( J . . )  - -K..e.. zJ - 21 CJ + eii 

where eij are 4 x 4 matrices with elements (eij)U = &&r and commutation relations 

k i j ,  el,,,] = Jj[eim - Gimeij . (2.6) 

This matrix realization IT) allows us to consider the CK groups as groups of linear 
transformations on R4. The one-parameter subgroup associated to the generator Jij can 
be written explicitly using the 'generalized' trigonometric functions sine,@) = & ( x )  and 
cosine&) C,(x) [12,14], defined in terms of power series as follows: 

The standard circular and hyperbolic functions are recovered when K = 1 and x = -1, 
respectively. The case K = 0 corresponds to the 'parabolic' or galilean trigonometric 
functions (SO@) = x ,  CO@) = I). Some particular properties of these functions that will 
be used in the next section are 

c;(x) +Ks:(x)  = 1 C K ( X  Y) = cx(x)czb') 7 K & ( X ) & ( Y )  
(2.8) 

&(x * Y) = U W d Y )  f G ( X ) & ( Y )  

and also 

e'& + e-'J;. ei&x - 
S&) = (2.9) 2 2i,E 

Another interesting feature of CKO is duality. This is a geometric transformation which 
carries points, lines and planes of a 3D-CKG into planes, lines and points, respectively, of a 
3D-CKG called the dual of the original one. In terms of the Lie algebra g(,.,,z2,K31, duality is 
an automorphism (DO : Jij + J i j )  of g(u,,w2,s) given by: 

CK@) = 

(go11 JOZq Jmnb3,912,9139 J23) = (-523. -513. -J03, -Jl2, -JOZ+ -JOl) . (2.10) 

The 3D-CKG generated by the new Lie algebra Dog(x,,a,a) is determined by a new set 
of parameters r,!. It is easy to check that 

Do € k K , . W , )  -+ B ( u , , a . n ) .  (2.11) 

The action of DO over the whole system of 3D-CKG is displayed in figure 2. The 
geometries represented by full circles are interchanged according to the arrows while the 
open circles are auto-dual. 

Finally, we mention that the concept of duality can be extended in three dimensions 
there are 24 dualities, which include DO as a particular case [Il, 131. 
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F i p  2. Ordinary dualily in CKO. It can be described as the reflection in the diagonal plane 
YI = K3. 

3. The quantum Cayley-Klein algebras 

Let g be a Lie algebra. Let us consider a completion A of its universal enveloping algebra 
Ug built as formal power series in a deformation parameter z with coefficients in Ug. We 
obtain a quantum deformation (in Drinfeld’s sense [2]) of Ug by endowing this associative 
completion with a (deformed) Hopf structure [9]. The Hopf algebra structure very sharply 
restricts the possibilities for the formal power series [22]. We have to define the co-product 
(A : A + A 8 A )  and ceunit ( E  : A -+ C), as well as the antipode ( y  : A -f A )  such 
that, Vu E A: 

(id @ A)A(a) = (A @ id)A(a) 

(id @ €)A@) = (6 @ id)A(a)  = a  

(3.1) 

(3.2) 

m((id @ y )A(a ) )  = m ( ( y  @ id)A(a))  = 6(a)l  (3.3) 

where m is the usual multiplication m(a 8 6)  = ab. The q-algebra U,g (q = ez, z E C) 
is completely defined once the deformed commutation relations are also given. Since the 
co-product A is an algebra homomorphism these relations have to be consistent with it, and 
the ‘classical’ Lie structure (as Hopf algebra) has to be recovered in the limit z + 0. 

The CK approach to quantum three-dimensional algebras [14] (see [23,24] for a similar 
scheme) contains a leading idea: to look for a simultaneous quantization of all the CK 
algebras in such a way that, whatever any particular value of the K< parameters, there is 
always a non-trivial deformed algebra structure. Our point of view presents two main 
advantages: the global perspective clarifies the role of the different possible contractions 
and the pattern of quantization assures that a deformed Casimir element is always available 
(compare [23]); the appealing interpretation of the quantum inhomogeneous algebras as 
symmetries of discrete systems [Z-281 is based on the existence of such a Casimir leading 
to a differentialdifference kinematical equation. 

3.1. The Hopf algebra uqg~e,.x2,K3~ 
In the following, we give a quantization for the (2+l)-dimensional case fulfilling the above 
requirements. This fact is strongly related with the selection of J o ~  and J12 as a pair of 



(3.9) 
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(compare with (2.8)). 

The quantum analogues of the second-order Casimirs (2.3) have~the following form: 

cf = 4Cxo3(z) [ ~ Z , ~ ( ~ J O ~ ) C _ ~ ~ ~ ~ ~ ~ ( ~ J I Z )  2 + K ~ ~ ~ S ~ ~ ~ ~ , ~ ~ ( ~ J ~ Z ) C ~ , ~ ( ~ J O ~ ) ]  

+ (l/z)Sgm(z) [KZK~J:~ +K3J&+Kij;3 +KiK&] (3.10) 

C; = C,(Z)S-,~(JO~~,)~-~Z,,~,(J~Z) + (~/~)S,(Z)[KZJOIJ~ - JOZJI~J.  

When all the ~i are different fiom zero, no Hopf subalgebras exist except the trivial 
(Lie) one generated by (J03, J I Z ) ,  but for quasi-simple q-algebqs some Hopf subalgebras 
arise and will be separately studied for each specific case. Of course, the limit z + 0 
of (3.4H3.8), (3.10) leads to the classical Hopf algebra Ugc,..,x2,x3) and to the classical 
Casimirs. 

.The matrix realization ’D(Jjj)  of the classical CK algebras given by (2.5) can be 
implemented to a matrix realization Dq(Jij) of the q-CK algebras with J03 and J I Z  
represented again by the matrices (2.5): after a straightforward computation we obtain 

s-zz(D(J03)) = (I/z)sm(z) DD(J03) 

C-ls,a(D(Jiz)) = I +KiK3Vvof(Z)DZ(Jiz) 

where I is the identity matrix and V.(z) = (1 - G(z))/K is the general version of the old 
‘versus sinus’ [12]. We get the quantum matrix realization as 

Dq(Jjj) = f i m D ( J j j )  if ij =01,02,13,23 

Dq(Jtj) = W J i j )  if i j  =03,12. 
(3.12) 

Notice that when any of the parameters ~t is equal to zero, this representation coincides 
with the classical one. 

3.2. Quantum involutions, contractions and dualities 

A large part of the classical saucture of involutions, contractions and dualities underlying 
CKG can be generalized for the quantum case if we allow the deformation parameter z 
(which becomes a dimensional quantity) to be transformed. This aspect and its relation 
with a possible physical meaning of z ,  given in [25-281, has been studied in detail in the 
(l+l)-dimensional case [14]. 

The three basic involutions in Uqg(x,,x2,x3) are defined by 

S& : (JoI, JOZ, Jm.,Jiz, J13,  J23; Z) + (-Joi, -Joz, -J03, Jiz, 513, Ju; -z) 

S:) : (Joi, JOZ, J03, JIZ, 313- JZ3; Z)  -+ (Joi, -Jm, -103, -Jiz, -J13. 523; -z) 
$1 : (JoI, JOZ, 3033 Jn. 513. 523; Z) -+ (Joi, Joz, -J03,Jiz3 -513. -Ju; -z) 

and generate an Abelian group (ZZ @ Z? @ Z.2) leaving invariant the entire Hopf structure. 

(3.13) 
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Three basic contractions are linked with the involutions S’& and are defined in terms of 
n?~ contractions by the following transformations depending on a new parameter E: 

q) ctq-Localcontr(J01,J0~,903,51z,JI3.92);w) = ( E J O I , E J O Z , E J O ~ ,  J I Z ~ J I ~ , J Z ~ ; Z / E )  

S& + q-Axial contr ( J o I . J o z . ~ O ~ , J I Z , ~ I ~ , ~ ~ :  w )  = ( ~ O I , E J O ~ ~ E J O ~ ~ E J ~ Z . E J I ~ .  J ~ ; z / E )  

* q-Plane conk (JoI, J G Z . ~ ~ O ~ , J I Z . J I ~ . J ~ ;  w )  = (JoI. Joz.EJo~, J12, d 1 3 r  d Z 3 ;  Z / E )  

(3.14) 

where and w are the transformed generators and the new deformation parameter. 
Applying the transformation (3.14) associated to S& to (3.4H3.8) and making the limit 
E + 0 we get a q-CK algebra with xi+l = 0 and the remaining ~i unchanged. An explicit 
example will be computed in section 4. 

Duality can be implemented in U4gtKl,a,x,) by preserving its ‘classical‘ action over the 
generators Jij and coefficients ~i and adding up a transformation law for z: 

4 Do : (~Ol ,~GZ. .b3 ,~12.913,du;  W )  E (-Ju.-JI~.-~O~.-JIZ~-JOZ.-JOI;-Z). (3.15) 

0: transforms quantum algebras according to 

D: : W ( x , . a . * )  + 4 % K 2 . K , ) ‘  (3.16) 

The 24 dualities existing in the classical case can be also generalized in a similar 
way. For certain values of the ~i new deformations (related with different elections of 
the primitive generators) can be obtained by applying a duality to a known deformation. 
From this point of view, the multiplicity of geometries linked with a certain classical group 
somehow announces the existence of different quantizations; q-dualities play a similar role 
connecting deformed quantum algebras as their classical counterparts relate geome~es  [14]. 

4. (2+ 1) quantum kinematical algebras 

The (2+1) kinematical groups of Bacry and Uvy-Leblond [29] appear in the 3D-CKG system. 
In terms of the physical generators (temporal translation H, spatial translations PI, 9, pure 
inertial bansformations KI , Kz and spatial rotation J )  these algebras can be identified to 
CK algebras following the three different assignations collected in table 1. 

. 

Table 1. Kinematical assignations. 

Type (a) includes three ‘relativistic’ groups: PoincarB and two de Sitter; and their ‘non- 
relativistic’ limits: Galilei and two Newton-Hooke. Both types (b) and (c) contain once 
the above three ‘relativistic’ groups and (b) also two para-Poincarb and Carroll groups (see 
figure 3). l l ~ u s ,  we get from our pattern three q-structures for Poincar6 and de Sitter 



Quantum (2 + I )  kinematical algebras 1291 
de Sitter (b) Poincar6 (b) Anti-de Sitter (b) 

(+ + -) (0 + -) (- + -1 

(+ - +) (0 - +) ( - -+I  - Spacelime Contraction 
---,.---~ Speed-Space Contraction 

Speed-Time Contraction ------* 
Figure 3. Each set of @+I) kinematical groups is displayed in the CK diagram. Their physical 
standard names are used as well as an additional label (a, b, c) according to table 1. 

algebras, but only one for Galilei and Newton-Hooke algebras. We consider each case in 
turn.  hereafter we will consider z E B, in order to properly define its physical significance). 

Type (a) assignation 

(all q-deformed Poincarc? algebru The algebra with coefficients (0, -, +) corresponds to 
the Poincad algebra, with Minkowski space as X", time-like lines as XC'), and time-like 
planes as X(". The general expressions (3.4)-(3.8) when translated in terms of the 'physical 
generators' give the following Hopf structure: 

CO-product: 

(4.1) . 
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The co-unit E ( X )  = 0 for.all generators. 
Antipode: 

/ H \  f 1  0 0 0 0 O \ / H \  
0 1 0 0 0 0  

Y 

0 z o o 0 1  

Non-zero commutation relations: 

IJ, K11 = Kz 

[J, 4 1  = -4 [KI, HI = Pl [ K z ,  HI = S-APZ) (4.3) 

1.7, Kzl = -KlC-,Qz) [J, Pi1 = s-z2(P2) 

[Kr. SI = H [Kz,  PzJ = ~ H  [ K I . K z ]  = - J .  

Two central elements can be easily derived.from (3.10): 

Cf = 4s!,,(ipz) + P: - H 2  C l  = S-z,(Pz)K1 - XJ - PlKz. (4.4) 

The q-algebra automorphisms q-parity and q-time-reversal are defined by 

S?;) E n4 : (H -+ H, Pi -+ -Pi, J + J, Ki -+ -Ki; z + -2 )  

S&.S~i)  
(4.5) 

04 : [H -+ -H, Pi -+ Pi, J -+ J, Ki + -Xi; z + 2 ) .  

The product z Pz has to be dimensionless in order to have a homogeneous co-product. 
In this case, z has the dimension of length, in a way consistent with its behaviour under 
q-parity and q-time-reversal (4.5). It is also worth remarking that there exists a non-trivial 
Hopf subalgebra generated by (Pz, PI, H, K1) in which 9 is a central element. If we 
think of assignation (a) as taking time-like planes as elements in X", the presence of this 
subalgebra is rather ~ t u r a l  since (PI, H ,  K i )  is just the classical isotopy subalgebra of a 
time-like plane. 

(aZ) q-deformed Galilei algebra. For (K,, ~ 2 ,  ~ 3 )  equal to (O,O, +) we get a deformation of 
the (2cl) Galilei algebra. The co-product is also given by (4.1); the co-unit remains (3.5); 
the antipode mms into 

and commutation relations are 

[J. K11 = K2 [J. K21 = -K1C-,2(Pz) 
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Three deformed brackets (like in (4.3)) are preserved. The q-Casimirs are 

cf = 4S1,,(4pz) f P; = S-zl(Pz)Ki - P i K z .  (4.8) 

In this case, a maximal Hopf subalgebra is (H, PI ,  Pz, K 1 ,  Kz). The quantum Galilei 
algebra can be obviously seen’as a q-axial contraction (3.14) (q-speed-space contraction in 
physical terms) of the previous q-Poincar6 algebra by making the following transformation: 

(4.9) 

and then taking the limit E -+ 0. Since UJP? = zP2 and wKl = zK,, it is straightfonvard 
to check that the co-product is invariant under this contraction provided w is the new 
deformation parameter. The same is hue for the co-unit. For the antipode we have 

@n, Pi, Pz. K I ,  Kz, & W )  (H, EPi, EPz, EKI. EKz. J :  Z / E )  . 

y(Kz) = Ey(K2) = E ( Z H  - Kz) = &(W&H - (I/&)&) % - 

y(S) = y(J) = ( - 2 9  - J )  = (-WE(l/E)Pi -J) % - wP1 - J 
(4.10) 

which coincides with (4.6) in terms of the new deformation parameter w. 
As far as the commutation relations are concerned, the non-deformed ones are easily 

computed and lead to the usual Galilei brackets after the limit E + 0. To obtain the 
deformed ones, we recall (2.7) 

[Kz, HI = E S - ~ ( P Z )  = E S - ~ ~ ~ Z ( ( ~ / E ) P Z )  = S-us(Pz) + S - w ~ ( P ~ )  

[J, Kz]  = -EKiC-Z2(Pz) = - - E ( l / E ) ~ i ~ - E z r U z ( ( l / E ) ~ z )  

C’O 

(4.1 1 )  

= - K,c-ul(P2) 5 - Klc-w%(P2) 

and the same procedure gives [J, PI] = S-wdJP~) due to the invariant behaviour  of the 
generalized sine and cosine functions in (4.11). If we apply the transformation (4.9) to the 
Poincar.6 invariants (4.4). the contraction limit with the standard rescaling l i ez  gives the 
quantum Galilei Casimirs (4.81. So, there is a complete equivalence of this IW process and 
the limit KZ -+ 0. 

(a3) Quantum de Sitter algebras. The two de Sitter algebras correspond to (+, -, +). 
The expressions for co-product, deformed commutations relations, etc, are readily obtained 
from (3.4)-(3.8), where the generalized sine SLl+(X) and cosine C-x,K,(X) functions 
are substituted by hyperbolic or circular functions (anti-de Sitter and de Sitter cases, 
respectively) in accordance with the sign of its label - K I K ~ .  

(a4) Quantum Newton-Hooke algebras. ’ b o  Newton-Hooke (NH) q-algebras are obtained: 
(+, 0, +) is associated to the oscillating-NH algebra, while (-, 0, +) corresponds to the 
expanding-Mi algebra. Since the co-product does not depend on KZ. its expression will be 
the same for the three algebras belonging to a ‘Kz-column’ in figure 1. This means that 
the q-axial contraction (KZ -+ 0) leaves this co-product invariant; this was the case for 
the Poincar6 and Galilei co-products studied in (al) and (a2). The explicit computation 
of the de Sitter -+ Newton-Hooke contraction is similar to (4.11). The co-product of the 
q-oscillating-Mi algebra coincides with the one defined for the q-anti-de Sitter Uq(so(2, 2)) 
algebra, and the sime is true for the other pair (expanding-NWde Sitter Uq(so(3, 1))) of 
kinematical algebras. 
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Dpe (b) q-Poincark and q-de.Siitter algebras 

The CK algebra with (0, +. -1 corresponds to Minkowski spacetime (XCO)), with space- 
l i e  lines as X(') and space-like planes as X(". The specialization of (3.4X3.8) to 
( ~ i )  = (0, +, -) and assignation (b) give a q-deformed Poincari algebra that is essentidly 
different from the one studied in (a). The kinematical automorphisms IF, 0 9  arc equal, 
in this order, to the involutions S70,.S&) and S&; z has now the character of a time. This 
process leads to the following Hopf structure: 

A(H) = 163 H + H  @ 1 A ( J )  = 1 8  J +  J @  1 

A ( P ~ )  = e+H @ pI + p1 @ e+zH A ( P ~ )  = e-fzH @ pZ + pZ 8 eizH 

A ( K ~ )  = e+H 8 K~ + K~ e f z H  - e-izH($J) @ pZ + pz @ eC"($zJ) 

A ( K ~ )  = e-+H EI K Z  + K~ 8 et.' + e-iZH(+zJ) @ p1 - pl 8 eW($zJ) 

(4.12) 

/ H \  / I  0 0 0 0 O\ / H \  
0 1 0  0 0 0  PI f ]=-[:  0 :z 0 - z 0 1 0  : ;: :I[!). 
0 0 0 0 0 1 .  

(4.13) 

The non-vanishing commutation relations are 

[J, K11= Kz [ J ,  & I =  -K1 [J, Pl] = Pz [ J ,  Pd = -PI 

[Kl, HI = Pl [Kz, HI = 4 tK1,91 = S-,4H) (4.14) 

[Kz. 4 1  = K Z 2 ( H )  [KI, Kz] = -JC..,r(H). 

This is just the (2+1)-dimensional version described in [30] of the qPoincar6 algebra 
of Lukierski ef a1 1161. It can be checked that ( H ,  J, PI, Pz) is a Hopf subalgebra where 
H is now a central element. This deformed subalgebra corresponds to a quantization of 
a direct sum between H and the classical isotopy subalgebra ( J ,  PI, Pz) of the spaceliie 
planes chosen in this assignation as X@). 

The Casimir elements of this algebra are 

Cf = 4Szz2($H) - PI 2 - P,' Cz = S-,z(H)J - PzK1+ P l K z .  (4.15) 

The element Cf has been used to study the strong interaction in nuclei €251; in that model, 
the deformation parameter is linked with a fundamental time scale. 

The de Sitter quantum kinematical algebras in type @) correspond to (k, +, -) and can 
be obtained by the same procedure; similar comments concerning the dimensional properties 
of z can be done. 

Type (c) q-Poincark The CK algebra with the triad (0, -, -) is the Poincar6 algebra realized 
in Minkowski spacetime (XQ)) with space-like lines (XC')) and time-like planes (XO). 
For ( K i j  (0. -, -) and assignation (c), relations (3.4X3.8) gives a q-deformed Poincard 
algebra. The kinematical automorphisms IF', @q are equal to the involutions S&).S&.S& 
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and S&S&, respectively. Hence, z has again the character of a length. The Hopf structure 
is 

A(P1) = 1 @Pi +Pi @ 1 A(Kz)  = 1 @ K z + K z @  1 

(4.17) 

0 0  0 0 1 0  
0 0 - z o o 1  

The non-vanishing commutation relations are: 

[ J ,  KII = K z C Z ~ ( P i )  ~ [ J ,  Kz] = -K1 [ J .  Pll = Pz 
[ J ,  4 1  = -Lzz(Pi )  [KI, HI = X-zz(Pi) [Kz, HI = Pz (4.18) 

[ K i ,  S I  = H [Kz, Pi] = H [ K i , K z ]  = -J  

and the qCasimirs are 

Cf = 4s?,z(iPi) + P,’ - H2 = S-,z(Pi)Kz + HJ - 9 K i .  (4.19) 

This quantum algebra includes again a Hopf subalgebra containing the isotopy 
subalgebra of a ‘ t imel ie  plane’ (Kz, 4, H )  and Pi; the latter being a central element. 
Its properties are essentially the same as for the type (a) Poincar6 deformed algebra. 

5. Concluding remarks 

It is remarkable that three different deformations for Poincart? algebra are obtained at once 
within our scheme. ripe (a) and (c) algebras have primitive generators with a similar 
physical relevance: 9, K1 and PI, K2 respectively. However, type (b) has H, J as primitive 
elements. In some sense (a)&) and (b) can be considered as kinds of ‘space-like’ and ‘time- 
like’ q-deformations. 

In contrast, only one q-Galilei algebra, corresponding to a q-speed-space contraction of 
the type (a) q-Poincari algebra, arises in our approach. Another quantum Galilei algebra 
with H and J as primitive generators can be obtained by contracting the type (b) q-Poincar6 
in the same way as Giller et al [30] do with the (3+1) q-Poincar6 algebra. Nevertheless, 
the resulting q-Galilei has no deformed commutation relations, in spite of the preservation 
of the co-product (4.12). Note that this quantum contraction is not a CK one (compare 
with (3.14)); this explains the absence of this q-Galilei algebra in our scheme. The CK 
framework implies that the natural non-relativistic limit of type (b) q-Poincar6 algebra is a 
q-Carroll algebra. This process can be carried out by means of a q-speed-time contraction 
(see figure 3). 
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The three-dimensional Euclidean algebra E(3)  appears in a natural way in the CK 
structure as the iso(3) algebra with ~i parameters (0, +, +). Thus, a quantum Euclidean 
algebra will be obtained from (3.4 j(3.8) for these values of K; by identifying the Joi as 
the translation generators Pj and keeping the remaining Jij as the rotation ones with the 
standard labelling. It is easy to check that the final expressions are just the same as the 
ones given by Celeghini et a1 in 1171. 

Finally, we would like to mention some open problems in this context. First, it would 
be worthwhile to analyse the possible deformations of the non-trivial centrally extended 
kinematical algebras (Galilei, Newton-Hooke and C q o l l  algebras) as has been done for 
the (1+1) case [14]. In particular, the extended oscillating Newton-Hooke algebra would 
be a proper two-dimensional quantum oscillator. Another interesting problem would consist 
of extending the CK scheme of deformation to higher dimensions. In spite of the fact that 
the co-product for the (2+1)-dimensional case (now dependent on ~ i )  is rather different 
from the (]+I) co-product, the (I+l) and (2+1) cases show some deep common properties: 
both structures are autodual, the whole geometrical underlying structure is generalized in 
the same way, and the antipode is essentially the same for both cases. It is therefore not 
unreasonable to assume that these c o w o n  properties should provide a way to understand 
how the CK scheme of deformation extends to higher dimensions. Work on these lines is 
in progress. 
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