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Abstract. In this paper we give an approach to quantum deformations of the (2+1} kinematical
Lie algebras within a scheme that simultaneousty describes all groups of motions of classical
geometries in & = 3 dimensions. We cover at once all the kinematical geometries including
the quantum versions of Inéinii-Wigner contractions, which are defined in a natural way and
relate g-deformations as expected. We thus obtain some g-deformations previously known for
the three-dimensional Euclidean and (2+1)-Poincaré algebras and also some new g-deformations
for these and other kinematical algebras, such as the (2+1)-de Sitter, Galilei and Newton-Hooke
algebras.

1. Introduction

The deformation of the universal enveloping algebras of classical simple Lie algebras can
be now considered as a solved problem in quantum group theory [1-3]. However, many
physically interesting algebras (for instance, Galilei and Poincaré algebras} do not belong to
this class. They are neither orthogonal nor pseudo-orthogonal real forms of classical simple
Lie algebras, but are related to them by means of Inénii-Wigner (IW)} contractions [4].
Among the methods for obtaining quantum analogues of kinematical algebras [5-7], a
successful one is based on a generalization of such a contraction procedure [8].

The task of giving a comprehensive framework summarizing all possible classes of
‘quantum contractions’ is not a straightforward consequence of the Iw concept of contraction.
Any transformation acting on a quantum group has to be defined on two different (but deeply
related) levels: the algebra and co-algebra structures (plus the antipode) [9, 10]. Classical
contractions deal with the former level, but their quantum generalizations, which concern
both levels together, are no longer unigue and the number of different possibilities increases
strongly with the algebra dimension.

The present paper uses a Cayley-Klein (CK) type geometrical setting [11-15] as a
supplementary structure in order to make some progress with this problem. Although the
geometrical interpretation is lost when quantizing, the underlying classical structure remains
relevant in terms of properties of the Hopf algebra. .

In section 2 we give a brief overview about those ¢lassical features of the CK Lie algebras
appearing in classical three-dimensional CK geometries (3D-CKG) that keep their interest in
the quantum case. Section 3 presents a prescription for a simultaneous g-deformation of
all these CK algebras. A matrix realization is also given. In section 4 some quantum (2+1)
kinematical algebras appearing in our scheme are studied: three (2+1) g-Poincaré and g-
de Sitter algebras, a (2+1) g-Galilei algebra and a (2+1) g-Newton—-Hooke algebra. Most
of these g-algebras are new, but some are already known (the (2+1) ¢-Poincaré given by
Lukierski et gl in [16] and the 3D g-Euclidean obtained by Celeghini er a! {17]). Finally,
in the last section we make some remarks and comments.
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2. The three-dimensional Cayley—Klein geometries

The goal in this section is not so much {o give a complete geometrical description of the 3D-
CKG as to introduce a global picture and to collect those properties of their motion groups
that will be used later. A complete description of these ‘classical’ systems for arbitrary
dimension will be given in a forthcoming paper [13]. From a group theoretical viewpoint,
a 3D-CKG is determined by a six-dimensional Lie group G and a set of three commuting
involutions S, Say and Sy of the Lie algebra g of G such that:

(1) The invariant elements of g under each involution are subalgebras 5®, 5 and h@ of
g of dimensions 3, 2 and 3, respectively.

(2) The group G acts transitively on the symmetric homogeneous spaces X = G/H®
(¢ = 0,1,2), where H® is the Lie subgroup of G with Lie subalgebra #®. The
homogeneous spaces X (i = 0, 1,2) are identified with the spaces of (first kind)
points, lines and planes, respectively.

(3) The 2D-subgeometries associated to the sets of lines through a point of X©® and to the
set of planes through 2 point of X®© are 2p.cKe.

These conditions completely characterize all the 3D-CKG via their motion groups. Let
Jij, G < j3 i, 7 =0,1,2,3) be a basis of the Lie algebra g, such that the action of the
involutions Sy (i =0, 1,2) is defined as

Sy Jor, Joz, Jo3, J12, J13, J3) — (=Jor, = I, —Joa, J12, F13, Ja3)
Say ¢ (Jot, Joz, Jos, 1z, J13, J23) —> (Jor, —Jo2, —Jo3, —J12, —J13, J3) 2.1
Sy ¢ (Jor, Joz. Jo3, N1ze 13, J13) — (Jor, Joz, —Jozs 12, — 13, —In) .

These involutions generate a Z» @ Zn ® Z, Abelian group and originate a grading of
the Lie algebra g [18-21]. Hypothesis (1) is then automatically fulfilled; by now imposing
hypotheses (2) and (3), the Lie algebra g turns out to be determined by three real parameters
k; (i =1,2,3); it will be denoted gy, ., ., and its Lie brackets can be written in terms of
the parameters «;; 1= Krp1kiq2.. .4 (< f3 i, j =0, 1,2, 3) as follows

[izs Jimd = Simdyj — 8jtdim + Simkim Jit + SitksjTim i<l j<m. 2.2
There are two linearly independent second-order Casimirs for gy, 4, )"

C1 = K2k Jg'l + x;chz + J023 + rc11c31122 + K J123 + fclsczlé

(2.3)
C2 = Jo3J1z + k2 J1 a3 — Joa 13 .

The parameters &; (i = 1,2,3) are linked to the ‘kind’ of measure of separation
between points, lines and planes (elliptical, parabolical or hyperbolical in Klein terminology
according to «; is > 0, = 0 or < 0, respectively). Each &; can be separately scaled to +1,
0, or —1, so there are 3° = 27 essentially different CKG associated to the possible triads
(k1, k2, k3) with &; € {+, 0, —}. The same abstract Lie algebra may appear more than once
in the list g¢,, ¢, .- When all k; are different from zero (eight cases), the algebras (2.2) are
so(4) (only once for (+,+,+)), so(3, 1) (four times) and so(2, 2) (three times). When one
or more k; are equal to zero, we obtain the so-called quasisimple algebras; among them
we get the inhomogeneous orthogonal algebras iso(3) Euclidean algebra (twice), iso(2, 1)
Poincaré algebra (six times) and iiso(2) Galilean algebra (twice). This multiple appearance
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Figure 1. Groups of motion of the 3D-CkG. Each point corresponds to a set of values
(k1. &2, x3) of the fundamental constants. The group G with Lie algebra Yy xaks) is also
shown. Contractions around points, (resp. lines and planes) move from the sides to the centre
slice of the cube, following the direction x| {(resp. «2, k3).

has a clear geometrical interpretation [13]. Figure 1 displays these 3D-CKG and gives for
each value of (x1, K2, k3) their Lie groups as abstract groups.

Each (basic) involution S gives rise to an IW contraction by leaving fixed the elements
invariant under such involution, multiplying the anti-invariant elements by a parameter &,
and taking the limit ¢ — 0. We have three basic contractions:

S < Local contr (Jo1, Joz, Joz, J1z, F13, Jaz) = (€Joi, 802, £J03, 12, J13, J23)
Say < Axial contr (Jo1, Joz2, Jos, Ji2, J13, J23) = (o, &Jo2, 8103, €12, 813, J23) (24)

Sz <> Planar contr (Jot, Jo2, Jo3, J12, 13, Jz3) = (Jor, Joz, €Jo3, J12, 813, 8J23)
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where J;; denotes the new generators which close the contracted algebra. The contraction
linked with the involution S¢ (f = 0, 1, 2) makes zero the parameter x;+1 while keeping
invariant the others and originates a new (contracted) geometry that describes the behaviour
of the old one in a neighbourhood of a point, a line or a plane, respectively.

The 3D-CK algebras can be realized in terms of 4 x 4 real matrices,

D(J;) = —xije5 + e (2.5)
where ¢;; are 4 x 4 matrices with elements (e;;)u = 8u.8; and commutation relations
leifs €m] = St€im — dimey; - (2.6)

This matrix realization D allows us to consider the CK groups as groups of linear
transformations on R*. The one-parameter subgroup associated to the generator J;; can
be written explicitly using the ‘generalized” trigonometric functions sine,(x) = S,(x) and
cosine, (x) = C,(x) [12, 14], defined in terms of power series as follows:

211
e Y
Se(x) = § i 2 ' i @7
The standard circular and hyperbolic functions are recovered when ¥ = 1 and ¥ = —1,

respectively. The case k¥ = () corresponds to the ‘parabolic’ or galilean trigonometric
functions (Sp(x) = x, Cp(x) = 1). Some particular properties of these functions that will
be used in the next section are

CHx)+xS2x) =1  Celxxy) = Cex)C(¥) F kS (X)S, ()
Se(x 2 y) = S (0)Ce () £ Ce(x)Se ()

and also

eiJEx + e—ivix eiJEx — e-ivix

— 3 SW=s—

Another interesting feature of CKG is duality. This is a geometric transformation which
carries points, lines and planes of a 3D-CKG iInto planes, lines and points, respectively, of a
3D-CKG called the dual of the criginal one. In terms of the Lie algebra gy, ., ,y, duality is
an automorphism (Do : Ji; = Jij) of g, 4, sy given by:

C.(x)= 2.9)

Jo1s Joos Joz, D12, Nz, Jaz) = (~Faz, =13, —Jo3, =J12, —Jo2. —Jo1) - (2.10)

The 3D-CKG generated by the new Lie algebra Dog, v, ) is determined by a new set
of parameters «;. It is easy to check that

Do : Bty ieaks) ™ Blrs iy - (2.11)

The action of Dy over the whole system of 3D-CKG is displayed in figure 2. The
geometries represented by full circles are interchanged according to the arrows while the
open circles are auto-dual.

Finally, we mention that the concept of duality can be extended: in three dimensions
there are 24 dualities, which include Dy as a particular case [11, 13].
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&

Figure 2. Ordinary duality in cxG. It can be deseribed ag the reflection in the diagonal plane
K| = K3.

3. The quantem Cayley—Klein algebras

Let g be a Lie algebra. Let us consider a completion A of its universal enveloping algebra
Ug built as formal power series in a deformation parameter z with coefficients in Ug. We
obtain a quantum deformation (in Prinfeld’s sense [2]) of Ug by endowing this associative
completion with a (deformed) Hopf structure [9]. The Hopf algebra structure very sharply
restricts the possibilities for the formal power series [22]. We have to define the co-product
(A:A— A®A) and co-unit (¢ : A —> C), as well as the antipode (y : A — A) such
that, Ya < A: ’

(id ® A)A(a) = (A ® id)Afa) (3.1)
(id ® €)Ala) = (€ @ id)Al) = a (32)
m((id ® y)A(a)) = m((y @ id)Ad@)) = e(a)1 (3.3)

where m is the usual multiplication m(a @ b) = ab. The g-algebra U,g (g = &%,z € C)
is completely defined once the deformed commutation relations are also given. Since the
co-product A is an algebra homomorphism these relations have to be consistent with it, and
the ‘classical’ Lie structure (as Hopf algebra) has to be recovered in the limit z — 0.

The CK approach to quantum three-dimensional algebras [14] (see [23, 24] for a similar
scheme) contains a leading idea: to look for a simultaneous quantization of all the ck
algebras in such a way that, whatever any particular value of the «; parameters, there is
always a non-trivial deformed algebra structure. Our point of view presents two main
advantages: the global perspective clarifies the role of the different possible contractions
and the pattern of quantization assures that a deforrmed Casimir element is always available
(compare [23]); the appealing interpretation of the quantum inhomogeneous algebras as
symmetries of discrete systems [25-28] is based on the existence of such a Casimir leading
to a differential—difference kinematical equation,

3.1. The Hopf algebra U9, v, 1)

In the following, we give a quantization for the (2+1)-dimensional case fulfilling the above
requirements. This fact is strongly related with the selection of Jy3 and Jj; as a pair of
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commuting primitive generators. The quantized universal enveloping CK algebra Uz 8., v, 0y
is defined by the following.
(i} The deformed co-product:

AR =19 Jp+Ju®1 AR =1@ /2 + 7128 1
AJor) = € 70 C_ 4, (2212) ® Jor + Jot @ 55 C_ye,(G2T10)
—e—1tis Sy (b2 d12) @ ks +x1 I3 ® e%Z’“S_glxg (%zhz)
AU) = €3 C 0 (22712) ® oo + Jor ® eF0C ey (32010)
+ e"—%z"“’S_x,za(%zfu) ® k1 Ji3 — k1 i3 ® € Sy (3212) 34
A1) = e H8C_ . (R2012) © Ji3 + Ji3 ® €320 C 4, (32012)
+eitlns (1zJ12) ® k302 — k3 J2 ® 1S, (32712)
A(Jn) =& 10C ., (Gzh) ® s+ I3 ® Iy, (J210)
— e~ 3tdn S_xm(%zjlz) ® K3Jo1 +13dp @ C%ZJMS—KM (51.2'112) .

(ii) The co-unit

e =0 Lj=01,23 i<j. (3.5)
(iii) The antipode
y(Jy) = —e?lw J o720 i,j=0,1,2,3, i<j (3.6)
which can be explicitly computed and written in matrix form as
JDI Cicu; (Z) 0 0 0 —K1 Sk’og (Z) 0 -IOI
Joz 0 ngg (z) 00 0 —K1K7 Sxm(?.’.) Joz
Jos | _ 0 0 1 0 0 0 Jo3
1o, | T 0 0 0 1 0 0 Ji2
i3 Keptes Sy (2) 0 0 0 G 0 Jis
o3 o k35, Z) 0 O 0 Cio (2) I

(3.7

where we recall that kg = Ky1ka2k3.
{iv) The non-vanishing commutation relations are

[Tz, Jo1] = Jo2 [J12, Jo2] = —k2Jon (o1, Joz] = k15 _z20,05 (J12)C_2(Jo3)

13, Jo1] = S_2(Jo3) C g2y (12} (13, Joa] = —k2xs gy (o1, Jsl = x1T13
[ V23, Joz] = S_2(J03)C gty (J12) [Jos, Jal = —ksdp. [Joo, Js] = xyiea s
[Jos, Jiz) = J13 [J23, J13] = =438 2200 (J12)C—2(J03) [Nz, Jiz) = e s

Notice that {2.9) assures that, for C,(x), S,(x) € A, AC.(x), AS.(x) € A®A
(see [22]). For instance

AS (%) = 5¢(x) @ Ce (x) + Ce(x) @ Sex)
Acx(x) = Cx(x) @ Cx(x) - ’CSsc(x) ® Sx(x)

3.9
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(compare with (2.8)).

The quantum analogues of the second-order Casimirs {2.3) have-the following form:

Cf = 4C(2) [SEZZ(%Jus)CEsz(%fu) + 16382 2y, 3T12)CE 2 (%Jos)]

+ (1/2) Sk (2) [lakc3 TG + k3G, + 1 T35 + k1ka T35 ] (3.10)
CF = Ciey(2)S-12(T03)} S—zegus (J12) + (1/2) Sy (D) [K2J01 23 — Jop i3] -

When all the «; are different from zero, no Hopf subalgebras exist except the trivial
(Lie) one generated by {Jg3. J12), but for quasi-simple g-algebras some Hopf subalgebras
arise and will be separately studied for each specific case. Of course, the limit z — 0
of (3.4)(3.8), (3.10) leads to the classical Hopf algebra Ugy, ,, .., and to the classical
Casimirs.

‘The matrix realization D(Jj;) of the classical CK algebras given by (2.5) can be

implemented to a matrix realization D,(J;;) of the g-CK algebras with Jpz and Ji2
represented again by the matrices (2.5): after a straightforward computation we obtain

8_2(D{J02)) = (1/2) Sy (2) D Jg3)
C_p2 (D)) = I + Vi, (2) D*(Ja)
8220 (D (12)) = (1/2) 80 (2) D(12)

Czrigey (P(J12)) = T + K143 Vieey (2) D (J12)

(3.11)

where 7 is the identity matrix and V. (z) = (1 — C.(2))/x is the general version of the old
‘versus sinus’ [12]. We get the quantum matrix realization as

Dy(Jy) = VA0S0 @ DWJy)  if if =01,02,13,23
D,(Ji)) = D) O f i =08,12.

(3.12)

Notice that when any of the parameters «; is equal to zero, this representation coincides
with the classical one.
3.2. Quantum invelutions, contractions and dualities

A large part of the classical structure of involutions, contractions and dualities underlying
CKG can be generalized for the quantum case if we allow the deformation parameter z
{which becomes a dimensional quantity) to be transformed. This aspect and its relation
with a possible physical meaning of z, given in [25-28], has been studied in detail in the
(1+1)-dimensional case [14].

The three basic involutions in U@, ., ) are defined by

Sty (Jots Joz, Jos, J12, Ji3, Ja3; 2) —> (—Jor, —Joa, —Joz, J12, J13, Jo3; —2)
5&y 1 (o, Joz, Jos, J1z, 13, J33 ©) — (Jon, —Joos —Joa, —Jize =13 s —z) - (3.13)

Sty (Jor, Joz. Jo3, J12, N3, J23i 2) > Uor, Joz, —Joa, iz, ~ 13, — I3 —2)

and generate an Abelian group (Z; ® Z, ® Z,) leaving invariant the entire Hopf structure.
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Three basic contractions are linked with the involutions Sg-) and are defined in terms of
W contractions by the following transformations depending on a new parameter £:

Sy < g-Local contr (Jor, Joz, Joz, J12, J13, Jas; w) = (eJou, eJoa, €Jm3, 12, J13, Jas; 2/€)
SGy < g-Axial contr (Jor, Foz, Jos, Jia, J13, Jo3; w) = (Jon, £Jo2, €Jo3, €112, £ 113, 33 2/€)

&, <> q-Plane contr (Jo, oz, Joz, J12, J13, Jos; w) = (o, Jo, €403, J12, 8013, 80233 2/8)
(3.14)

where J;; and w are the transformed generators and the new deformation parameter.
Applying the transformation (3.14) associated to S(q,-J to (3.4)~(3.8) and making the limit
£ — 0 we get a g-CK algebra with «;.; = 0 and the remaining x; unchanged. An explicit
example will be computed in section 4.

Duality can be implemented in Uyg,, , «,) bY preserving its ‘classical’ action over the
generators J;; and coefficients «; and adding up a transformation law for z:

Df 1 (Jor, Jozo Joz, J12, Tiz, Jozs w) = (=3, ~ 13, ~Joz, —Ji2, —Jo2, —Jor; ~2) . (3.15)
D{ transforms quantum algebras according to

Dg : Uqg('ts.ifz.'fa) - Uqg(ﬂs.l‘z-“l) . (3.16)

The 24 dualities existing in the classical case can be also generalized in a similar
way, For certain values of the x; new deformations (related with different elections of
the primitive generators) can be obtained by applying a duality to a known deformation.
From this point of view, the multiplicity of geomeiries linked with a certain classical group
somehow announces the existence of different quantizations; g-dualities play a similar role
connecting deformed quantum algebras as their classical counterparts relate geometries [14].

4. (2+1) quantum kinematical algebras
The (2+1) kinematical groups of Bacry and Lévy—Leblond [29] appear in the 3D-CKG system.
In terms of the physical generators (temporal translation H, spatial translations Py, Ps, pure

inertial transformations K;, K, and spatial rotation J) these algebras can be identified to
CK algebras following the three different assignations collected in table 1.

Table 1. Kinematical assignations.

Type (1, k2, 83) H B Py Ky K 7

@) k1,02, +) €0 Ju Jn Ju Ji2 Jiu I
) (et} <0 Jy Ju Jo 3 Ja S
(c) k1, = =) Jo Sz Jm Js Ji2 —J3

Type (a) includes three ‘relativistic” groups: Poincaré and two de Sitter; and their ‘non-
relativistic’ limits: Galilei and two Newton-Hooke. Both types (b) and (c} contain once
the above three ‘relativistic’ groups and (b} also two para-Poincaré and Carroll groups (see
figure 3). Thus, we get from our pattern three g-structures for Poincaré and de Sitter
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de Sitter (b) Poincaré (b) Anti-de Sitter (b)
{++-) 0+-) (-+-)
P »
IIT I’ ,p’
150(3) {b) il (b) Para-Pdincaré (b}
§(+ + 0} -+9)
l
; . s
! d
K | 4
Oscilating-NH (a) Galilei{a ExphndingKH (a)
(+04) ; (00 +) - «f}
—T¢
! i Sitter ic) Beincaré Ec) Antide Sitter (c)
i ! A S 0--) & --9
z ~ i
i
. i
Anti-de Sitter (a) Poincaré (a) de Sitter (a)
(+-+) (0-+4) --+)
- Space-Time Contraction
—— g Speed-Space Contraction

==—====- Speed-Time Contraction
" Figure 3. Each set of (2+1) kinematical groups is displayed in the & diagram. Their physical
standard pames are ased as well as an additional fabel (a, b, ¢) according to table 1.

algebras, but only one for Galilei and Newton-Hooke algebras. We consider each case in
turn. (Hereafter we will consider z € R, in order to properly define its physical significance).

Type (a) assignation

(al) g-deformed Poincaré algebra. The algebra with coefficients (G, —, +) corresponds to
the Poincaré algebra, with Minkowski space as X, time-like lines as X, and time-like
planes as X@. The general expressions (3.4)(3.8) when translated in terms of the ‘physical
generators’ give the following Hopf structure:

Co-product:

AP)=19P+P®!
AKD=18Ki+Ki1®1
A(H) = g~1tP: QHL+H® ezPs
1 L. p. 4.1)
APy =e 2@ P+ P @ ei*h
A(Kg) = e_%“’: R Kz -+ Kz @ e%ZPz + e—%z’f'z(%zKl) ® Pl — Pl ® e%z}’g(%z!{l)

A =P gy 1 J@eath — e 1Ph(LK ) @ H + Heei?h(lzK)).
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The co-unit €(X) = 0 for.all generators.

Antipode:
H i 00000 H
Py ¢ 10000 P
Ryt 10 01 O 00 Py
Teeif=" 1o oo0100[]|x “.2)
K, -z 00 0 1 0 Ky
J 0 z 0 0 01 J
Non-zero commutation relations:
7, K1]l=K; [7, K2] = ~K 1 C_2(Py) [J, Pl = S_p(Ps)
[J, Psl=—-P (K1, Hl= P [Kz, H] = S_p(P) @3

[K:, All=H (K2, i) =H [Xy, Kp)=—7.
Two central elements can be easily derived from (3.10):

Cl =482, AP+ PP —H*  Ci=Sp(P)Ki—HI—PK,. (44)
The g-algebra automorphisms g-parity and g-time-reversal are defined by

Soy=M: (H—>H, P> —P, J > J, Ki > —K;; z > —z}
@4.5)
S‘(IO)'S‘(II)qu 1 {H—-~-H, B> P, J—=> I K= -K;; 7>z}

The product z P, has to be dimensionless in order to have a homogeneous co-product.
In this case, z has the dimension of length, in a way consistent with its behaviour under
g-parity and g-time-reversal (4.5). It is also worth remarking that there exists a non-trivial
Hopf subalgebra generated by (P, Py, H, K1} in which P, is a central element. I we
think of assignation (a) as taking time-like planes as elements in X', the presence of this
subalgebra is rather natural since (P, H, K1) is just the classical isotopy subalgebra of a
time-Jike plane.

(a2) g-deformed Galilei algebra. For (ky, #2, %) equal to (0,0, ) we get 2 deformation of
the (2+1) Galilei algebra. The co-product is also given by (4.1); the co-unit remains (3.5);
the antipode turns into

H i 000 0 O\ /H
P, o10000}(n
Al _ looroool]la
Y1517 looo 1 0 0llx .6)
K, oooo010]lx
7 0z 000 1/\1J

and commutation relations are
[LEil=K, [J, Kp] = ~EK1C_2(Py) [J, Pl =S_2(P)
[J, P2]=~P (K1, Hi= P (K2, H] = §_(P) @7
(K., Al=0 [K2, P21=0 K, K2]=0.
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Three deformed brackets (like in (4.3)) are preserved. The g-Casimirs are
Cl=482,GPY+ P C=S_a(P)Ki—PKa. 4.8)

In this case, a maximal Hopf subalgebra is (H, P, P, K, K2). The quantum Galilei
algebra can be obviously seen-as a g-axial contraction (3.14) (g-speed-space contraction in
phisical terms) of the previous g-Poincaré algebra by making the following transformation:

(H’ Pla IPZ, K]v sz J; w) = (Hr l‘-""}:'11 £P2, SKI! SKZ: J; Z/S) (4'9)

and then taking the limit ¢ — 0. Since wP; = z P and wKy = zK,, it is straightforward
to check that the co-product is invariant under this contraction provided w is the new
deformation parameter. The same is true for the co-unit. For the antipode we have

y(Ks) = 67 (K;) = s(zH — Ky) = s(wsH — (1/)K) =5 — Ko
(4.10)

v =y(J) = (2P —J) = (~ws(l/)P; — J) "> —wlP ]

which coincides with (4.6) in terms of the new deformation parameter w.

As far as the commutation relations are concerned, the non-deformed ones are easily
computed and lead to the usval Galilei brackets after the limit £¢ — 0. To obtain the
deformed ones, we recall (2.7)

=0

[.Kz, ]HI] = ES_zz (Pz) = SS_Ezwz((I/E)Ipz) = S._wz (]Pz) —_— S_wz (]P’z) )
[J, Kz] = —eK1C_pz (xf’z) = —e(1/e)K1C_pp2 ((1/)P2) (4.11)

e~

= =K1 C_po(Pr) — —KiC_ (P2}

and the same procedure gives [J, Pi] = S_,2(F2) due to the invariant behaviour .of the
generalized sine and cosine functions in (4.11). If we apply the transformation (4.9) to the
Poincaré invariants (4.4), the contraction limit with the standard rescaling 1/¢? gives the
quantum Galilei Casimirs (4.8). So, there is a complete equivalence of this IW process and
the limit &5 — 0. . :

{a3) Quantum de Sitter algebras. The two de Sitter algebras correspond to (£, —, ).
The expressions for co-product, deformed commutations relations, ete, are readily obtained
from (3.4)-(3.8), where the generalized sine S_.,(X) and cosine C_, ., (X) functions
are substituted by hyperbolic or circular functions (anti-de Sitter and de Sitter cases,
respectively) in accordance with the sign of its label —kks.

(ad) Quantum Newton-Hooke algebras. Two Newton—Hooke (NH) g-algebras are obtained:
(4.0, +) is associated to the oscillating-NH algebra, while (—, 0, +) corresponds to the
expanding-NH algebra. Since the co-product does not depend on &3, its expression will be
the same for the three algebras belonging to a ‘«p-column’ in figure 1. This means that
the g-axial contraction (k; — 0} leaves this co-product invariant; this was the case for
the Poincaré and Galilei co-products studied in (al) and (a2), The explicit computation
of the de Sitter — Newton-Hooke contraction is similar to (4.11). The co-product of the
g-oscillating-NH algebra coincides with the one defined for the g-anti-de Sitter U, (so(2, 2))
algebra, and the same is true for the other pair (expanding-NH/de Sitter U,(s0(3, 1))) of
kinematical algebras.
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Type (b) g-Poincaré and g-de Sitter algebras

The CK algebra with (0, +, —) corresponds to Minkowski spacetime (X@), with space-
like lines as X and space-like planes as X™. The specialization of (3.4)-(3.8) to
(x;) = (0, 4+, —) and assignation (b} give a g-deformed Poincaré algebra that is essentially
different from the one studied in (a). The kinematical automorphisms 19, @7 are equal,
in this order, to the involutions S, -S%, and S%,; z has now the character of a time. This
process leads to the following Hopf structure:

AH)=1®9H+HQ®I1 AN=10J7J+7®1

A(P) =e"1H @ P 4 P, @ &1 AP = ¥H @ P, + P, @ e3?H

@.12)
A(K) =e 3 @ K1 + Ky @it —e i (1) @ P+ R @ &4 (J2)
ARy =e 58 @ Ky + Ko @ e + 17 (42) @ Py — Py @ et ({2))
H 1 0 0 00 0\ /H
Py 01 0 00 0}]p
BRl{__loo 1 00ol]la
g |= o == 0 10 0]x (413)
K2 6 0 — 01 0f|K,
J 0o 0 0o 00 1/\y

The non-vanishing commutation relations are

[7, K1l =K, [J, K] ==Ky [J,Pl=P, [J, P2l = Py
K1, Hl=P [Kz, H] =P, [Ki, Pl = S_p2(H) 4.14)
[K2, P2] = S_p2(H) [K1, K2] = =JC_2(H).

This is just the (2+1)-dimensional version described in [30] of the g-Poincaré algebra
of Lukierski et al [16]. It can be checked that {#, J, P;, P;} is a Hopf subalgebra where
H is now a central element. This deformed subalgebra cotresponds to a quantization of
a direct sum between H and the classical isotopy subalgebra {J, P;, P;) of the space-like
planes chosen in this assignation as X®.

The Casimir elements of this algebra are

¢l = 435z2 ((H) - Pl— P! Ci =S_p(HY — PKy + PiK,. (4.15)

The element Cf has been used to study the strong interaction in nuclei [251; in that model,
the deformation parameter is linked with a fundamental time scale.

The de Sitter quantum kinematical algebras in type (b) correspond to (£, -+, —} and can
be obtained by the same procedure; similar comments concerning the dimensional properties
of z can be done.

Type (c) g-Poincaré The CK algebra with the triad (0, —, —) is the Poincaré algebra realized
in Minkowski spacetime (X©) with space-like lines (X*V) and time-like planes (X®).
For (x;) = (0, —, —) and assignation (c), relations (3.4)+(3.8) gives a g-deformed Poincaré
algebra. The kinematical automorphisms 17, @7 are equal to the involutions Sg- 5%, St
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and S%,-5%,, respectively. Hence, z has again the character of a length. The Hopf structure
is

AP)=1@P+P ol AKD=10K;+ K, @1

A(H)=e"3*P @ H+ H @ e3?P A(Py) = e 1P @ P, 4 P, @ e3Pt

{4.16)
A(Ky) = e—$2P QK +KEI® e1th _[__e--zlsz (%sz) QP—-—P® ei‘zF; (%ZKz)
AW =e 2P @ T+ J ®etth 4 12R (zK) ® H — H®eiht (2Ky)
H 1 0 0 000 H
P 01 0 00o0|f~
Rl__lo o1 o0o0o]|r
| [T |-z 0 0 100K @.17)
K, 000 010])|lx
J 0 0 —2 0 01 J

The non-vanishing commutation relations are:

[ E]=KC (P [, K] =—K, [, A) =P,
[, Po] = —5_n(P) (K, H] = S_2(P) (K2, H]=P, (413)
K., il=H Kz P))=H Ky, K2) = —J

and the g-Casimirs are
cf =452, (3P)+ P} - H? C!=8 2(P)K2+ HI — PKy. (4.19)

This quantum algebra includes again a Hopf subalgebra containing the isotopy
subalgebra of a ‘time-like plane’ (K>, P», H} and Py; the latter being a central element,
Its properties are essentially the same as for the type (a) Poincaré deformed algebra.

5. Concluding remarks

It is remarkable that three different deformations for Poincaré algebra are obtained at once
within our scheme. Type (a) and (¢) algebras have primitive generators with a similar
physical relevance: P, K; and Py, K, respectively. However, type (b) has H, J as primitive
elements. In some sense (a)/(c) and (b) can be considered as kinds of *space-like’ and ‘time-
like’ g-deformations.

In contrast, only one g-Galilei algebra, corresponding to a g-speed-space contraction of
the type (a) g-Poincaré algebra, arises in our approach. Another quantum Galilei algebra
with A and J as primitive generators can be obtained by contracting the type (b) g-Poincaré
in the same way as Giller et af [30] do with the (3+1) ¢-Poincaré algebra. Nevertheless,
the resulting g-Galilei has no deformed commutation relations, in spite of the preservation
of the co-product (4.12). Note that this quantum contraction is not a CK one {compare
with (3.14)); this explains the absence of this g-Galilei algebra in our scheme. The CK
framework implies that the natural non-relativistic limit of type (b) g-Poincaré algebra is a
g-Carroll algebra. This process can be carried out by means of a g-speed-time contraction
(see figure 3),
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The three-dimensional Enclidean algebra E(3) appears in a natural way in the CK
structure as the iso(3) algebra with &; parameters (0, 4, +). Thus, a quantum Euclidean
algebra will be obtained from (3.4)-(3.8) for these values of &; by identifying the Jy as
the translation generators F; and keeping the remaining J;; as the rotation ones with the
standard labelling. It is easy to check that the final expressions are just the same as the
ones given by Celeghini et af in [17].

Finally, we would like to mention some open problems in this context. First, it wouild
be worthwhile to analyse the possible deformations of the non-trivial centrally extended
kinematical algebras {Galilei, Newton—Hooke and Carroll algebras) as has been done for
the (1+1) case [14]. In particular, the extended oscillating Newton—Hooke algebra would
be a proper two-dimensional quantum oscillator, Another interesting problem would consist
of extending the CK scheme of deformation to higher dimensions. In spite of the fact that
the co-product for the (2+1)-dimensional case (now dependent on ;) is rather different
from the {1+1) co-product, the (1-+1) and (2+1) cases show some deep common properties:
both structures are autodual, the whole geometrical underlying structure is generalized in
the same way, and the antipode is essentially the same for both cases. It is therefore not
unreasonable to assume that these common properties should provide a way to understand
how the CK scheme of deformation extends to higher dimensions. Work on these lines is
in progress.
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